
C
R

E
D

IT
 T

K

@ I N T E R A C T I O N S M A G4 0 I N T E R A C T I O N S M AY–J U N E 2 0 2 0

More recently, Papert’s principles
have been repopularized by the Maker
movement, which has focused on
democratizing technology for various
user groups. Particular to children,
these technologies have been used to
educate children in computational
thinking. The assumption has
been that by helping children make
computationally intelligent artifacts,
the children would in turn learn
computational thought. So, how far
have we come in realizing Papert’s
vision of student-centered, discovery-
based learning?

We recently explored this question
with a fairly new physical computing

These days, children have many types
of physical computing platforms,
robotics devices, and computational
toys available to them in both
educational and domestic settings.
The abundance of these devices for
children are the fruits of research
initiatives that began in the late 1960s.
Seymour Papert’s constructionist
principles about actively “creating and
constructing meaningful” [1] artifacts
as a way to build knowledge stands
out among various learning theories.
These ideas actively engage the learner
in the learning process, but more
important, help them create a “public
entity” [2] that can be shared socially.

T
Insights

	→ Physical computing kits
should be dependent
on the developmental
considerations
of children.

	→ Lack of visibility and
trying to make things
“just work” hinders
the exploration of
programming concepts.

	→ Learning programming
should be a healthy side
effect of learning to solve
problems and expressing
ideas through language.

Physical
Computing for

Children:
Shifting the Pendulum

Back to Papertian Ideals

 Swamy Ananthanarayan and Susanne Boll,
University of Oldenburg

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 0 2 0 I N T E R A C T I O N S 41

IM
A

G
E

B
Y

B
O

O
K

 S
IX

 I
M

A
G

E
S

/
S

H
U

T
TE

R
S

TO
C

K
.C

O
M

workshop, we maintained a communal
area consisting of a poster and a table
where children could display their
work and discuss their ideas (Figure
2). This is in line with an important
aspect of Papert’s philosophy, which
includes the public nature—the
presentation and sharing—of artifacts
that children create [3]. To scaffold
the design process, we provided paper
models for prototyping design ideas
for the two project topics prior to
implementation (Figure 2).

COSTUMES AND BACKPACKS
We found children to be enthusiastic
and eager to receive their own
personal Calliopes; they even
personalized their Calliope cardboard
boxes with symbols and drawings.
Moreover, children were excited
to immediately start exploring the
programming environment. While
some of this enthusiasm settled
over time, as the novelty of the new
platform wore off, kids were generally
up for trying new things every session.
For example, the discovery of how to
generate tones on the piezo speaker
rippled across the classroom until the
majority of Calliopes were generating
some melody or tune. For some
children, the Calliope could simply
not keep up with their imagination,
with the platform’s actual capabilities
falling short of their expectations.
One girl dropped out of the class
during the Halloween costume project
because she wanted to make a Darth
Vader voice modulator, a task that is
hard to accomplish without significant
work. For the other students, we
observed a period where expectations
were recalibrated as they slowly
learned what the Calliope could and
could not do.

While making the costumes,
children primarily employed the light
display and the RGB LED to in some
way accentuate the crafted costume.
For example, one 8-year-old girl made
butterfly wings with a small cutout
in the middle to display a heart on
the Calliope LED display (Figures
3a, 3d). A few children also used the
buttons and the piezo speaker to make
the costume a bit more interactive. In
the grim reaper costume showcased
in Figures 3b and 3c, the Calliope
not only displays a sickle but also
reacts to buttons on either side of the
board. If button A is pressed, the LED

platform called the Calliope mini
(calliope.cc) with a small group of
primary-school children. Much like
its ancestor, the BBC micro:bit, it
is designed to introduce children,
elementary-school age and higher,
to actively get involved in building
new computational applications
and artifacts. In this article, we
aim to initiate a discussion about
the design of physical computing
platforms for children. Based on our
preliminary work, this area could
be suffering from a version of the
QWERTY phenomenon—importing
technologies from other professional
fields without the necessary
adaptations for their use by children.

EXPLORING CALLIOPE
Shaped like a six-pointed star (Figure
1) with connection points at the
edges, the Calliope integrates 25
red LEDs, an RGB LED, two push
buttons, a small piezo speaker, a
motor driver, wireless Bluetooth
communication, and a variety
of sensors (e.g., microphone,
accelerometer, compass, temperature,
brightness). It can be programmed
from any Web browser using a block-
based language and uses a micro USB
cable for program transfer.

Our goal was to assess how well
Calliope integrated with children’s

approaches to crafting and making
things, and also how well it supported
their programming capabilities.
Did it facilitate the discovery of
programming-language concepts? In
partnership with a local elementary
school, we organized an after-school
Calliope workshop with 10 children
(boys and girls, five each) who were
8 or 9 years old. The two-hour
workshops occurred twice a month
from late August to early January; we
were able to hold a total of 10 sessions.

The workshops were designed to
follow constructionist principles, with
the intent of helping children discover
Calliope for themselves through
creative experimentation rather than
through lectures or step-by-step
guidance [2]. As adults, our roles were
more mediational than instructional.
Although we periodically provided
brief overviews of Calliope’s
capabilities through examples,
children were left to explore Calliope
on their own, with two to three adults
as roaming facilitators. To provide a
common shared goal for the children,
we presented two broad gender-
neutral project topics. From August to
October, the theme was to develop an
interactive Halloween costume, and
from November to January, children
worked on creating an interactive
backpack accessory. During each

The workshops were designed to
follow constructionist principles, with
the intent of helping children discover
Calliope for themselves through
creative experimentation.

Figure 1. The Calliope mini physical computing platform with a Web-based programming
environment that uses blocks to represent program instructions.

@ I N T E R A C T I O N S M A G4 2 I N T E R A C T I O N S M AY–J U N E 2 0 2 0

display scrolls the text “I kill you,”
and if button B is pressed, it plays an
ominous melody. Although children
experimented with the sensors,
particularly the light sensor and the
accelerometer, they were hesitant to
use them for this project. Perhaps an
interesting aspect was that children
did not really distinguish between the
different sensors and considered the
Calliope itself to be the sensor.

Children, however, ventured
beyond their comfort zone during the
backpack accessory project. The use
of sensors was more prevalent, and
children who were initially using the
Calliope as a display experimented
with buttons and audio. For example,
the 8-year-old girl who had made

the butterfly wings (Figure 3d)
utilized the Calliope this time to
play a tone and display a little figure
when button B was pressed (Figure
4a). Three of the projects used the
light sensor to turn the Calliope
into a small flashlight to better
illuminate the contents of the pack
when it was opened (Figure 4b). A few
children experimented with external
LEDs to aesthetically accentuate
their backpacks (Figure 4c); these
lights were connected with wires
to the output ports and often were
controlled via the Calliope’s buttons.
For three children, the accelerometer
was used to idiosyncratically display
various images on the LED screen or
turn the RGB LED different colors.

For example, one child displayed a
little stick figure when the backpack
was shaken.

SEPARATION OF CRAFTING
AND PROGRAMMING
An interesting observation from our
workshop was that although children
were excited to program the Calliope
and integrate it into their projects,
there was a distinct separation
between crafting and programming.
During sessions, children focused on
one or the other. Typically, children
would craft their artifacts or costumes
and then figure out how to integrate
the Calliope afterward. This could
be in part due to their still-maturing
planning capabilities, but it could also

Figure 2. Sharing and scaffolding the design process: a) communal poster for displaying ideas b) backpack paper-based template for prototyping
c) popup figure for costume design.

Figure 3. Calliope Halloween costumes: a) butterfly wings with Calliope integrated in a yellow felt pouch b) grim reaper cape with Calliope
integrated in a fabric pocket c) a sickle shown on the LED display d) a heart shown on the LED display in the middle of the butterfly wings.

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 0 2 0 I N T E R A C T I O N S 4 3

detect hand movement but have the
LED display on the backpack. This
would require two communicating
Calliopes, which, while possible, is
much harder to realize. Even if we
disregard wearable designs, a child
may want to monitor the temperature
outside but have the LED display
inside her room.

EASY TO PROGRAM BUT
HARD TO UNDERSTAND
From a programming perspective,
children described the Calliope as
“very easy to program,” but we found
they had considerable trouble
explaining their code or
understanding how the system
worked. The concept of a forever loop
was missed by most children, and they
often did not understand why one was
required for polled actions such as
button presses. We received questions
such as: How long is a loop? What if I
do it 1,000 times? How many seconds
is 500 ms? What does it mean to “get
ambient light value”? However,
despite these questions, we did find
children exploring and trying the
various colorful blocks in different
configurations. Moreover,
conditionals such as if-then
statements, when associated with
specific components (e.g., on button A
pressed), were well understood.

While some of the programming
issues can be solved by age-
appropriate wording in the blocks-
based environment (e.g., “turn pin
1 on” or “give power to pin 1”),

be that the Calliope does not integrate
well into the types of crafting
activities (e.g., drawing, coloring,
gluing, cutting) to which they are
accustomed. The Calliope in some
ways stands distinctly apart from
familiar materials. Consequently, they
perceive it as something that needs to
be affixed, attached, or accommodated
for with a special pouch. It might
be beneficial, therefore, to think
about how these physical-computing
platforms can be integrated into
children’s practices.

TOO MUCH COUPLING
Perhaps an alternative way of
envisioning physical computing would
be to consider how we can support the
kinds of things kids are interested in
making and where we currently fall
short. For example, one of the girls
from our workshop wanted to create
a superhero eye mask with a string of
blue, blinking LEDs highlighting the
eyes. What seems like a simple task
actually requires considerable work.
The LEDs need to be stitched and
connected with conductive thread,

and the positive and ground leads
need to route to the Calliope’s ground
and digital out connections. Since the
Calliope cannot be accommodated
on the eye mask due to its size, it has
to reside elsewhere on the costume.
To program this implementation,
children have to go to the advanced
menu in the blocks-based editor, find
the “digital write” block, and set the
pin and its associated value. To an
8-year-old child who wants to create
a Halloween costume, this entire
process (the construction and the
programming terminology) is both
confusing and complicated. Moreover,
this particular design does not employ
any of the Calliope’s sensors.

Another issue lies with the coupling
of sensors and feedback modalities
on the same board. For one, children
were unable to see the individual
sensors on the board and conceptually
grouped all the sensors together.
But more important, designs that
required sensors to be separate from
the feedback modalities were simply
not possible. For example, one child
wanted to use the accelerometer to

Children described the Calliope as
“very easy to program,” but we found
they had considerable trouble
explaining their code or understanding
how the system worked.

Figure 4. Backpack accessories: a) Calliope sewn inside a backpack, utilizing RGB LED and display b) Calliope used as a mini flashlight to
illuminate a backpack’s interior based on light sensor values c) backpack fitted with external LEDs controlled by the Calliope’s buttons.

@ I N T E R A C T I O N S M A G4 4 I N T E R A C T I O N S M AY–J U N E 2 0 2 0

there still exist several cognitive
disconnects in the programming
process. After putting together their
code, children had to connect the
Calliope via USB and download the
program. This process confused
children throughout the entire
workshop. Finding the tiny USB port
was difficult and children often forgot
to connect the Calliope. They also
had trouble transferring the compiled
file to the Calliope USB drive on
the computer. This was particularly
vexing when multiple compiled files
from prior programs were already
present in the downloads folder.
Children also did not understand
why the Calliope did not work when
the code was downloading. Although
there is a built-in Calliope simulator
in the programming environment,
it could not simulate the sensors,
so children had trouble figuring out
what the sensors were doing without
downloading the program.

LACK OF VISIBILITY
The key point here is that children
lacked visibility into what the Calliope
was doing, and therefore had trouble
debugging their code. Often, when
kids encountered a problem, they hit
a button, shook the device, observed
what others were doing, or simply
asked one of the adults. Many times,
they did not even know that their
code had errors. As one exasperated
student put it, “Why can’t you tear out
the heart of the Calliope and examine
it?” This statement was prompted
by the fact that the transfer of code
from the programming environment
to the hardware was unidirectional.
There is, for example, no way to look
at the code on an already programmed
Calliope by connecting it via USB.
The child must remember to save the
latest version of the program on a
shared network resource. As one child
remarked, “Maybe if you connect
[the Calliope], the program should
automatically show up. I don’t know
whether the program on the Calliope
is already the right program.”

A DISTRIBUTED APPROACH
One possible solution that addresses
some of the problems discussed
above would be to design a wireless
kit of electronic blocks that were

independent of each other and did
not require a master microcontroller.
Each sensor, LED, button, or motor
would contain its own microcontroller,
wireless adapter, and battery. These
blocks could operate independently
or communicate with each other
wirelessly; therefore, a button on one
side of the room could turn on a motor
on the other side without a master
microcontroller or wires in between.

Similarly, it should be quite
possible to program the individual
blocks wirelessly. This should greatly
reduce the frustration kids often
feel in waiting for the program to
download. Moreover, the effects
of the program cannot be seen in
real time. This could be solved by
switching to an interpreted language,
where each independent module
runs an interpreter that evaluates
program statements in real time,
wirelessly. Such a solution would not
only facilitate debugging but also
allow children to explore different
parameters more quickly.

TOWARD PAPERT’S VISION
While children in our workshop had
fun learning to use the Calliope,
we still have some way to go in the
realization of physical computing
kits for children. Perhaps the real
issue between Papert’s vision and
some of today’s physical-computing
platforms is philosophical. Platforms
like the Calliope are really geared
toward teaching through instruction
rather than discovery. This is perhaps
because of the current rhetoric around
teaching children programming.
There is an implicit urgency that
betrays the economic necessity
for more computer scientists.
Contrast this with Papert’s vision in
Mindstorms [3], where programming
is seen as an aid to a child’s self-
knowledge and an understanding of
his or her own mind. Competence in
programming is almost a healthy side
effect of learning to solve problems
and expressing ideas through language
(a programming language just happens
to be one of many).

Admittedly, the ideas presented
here are not particularly new. The
design approach we advocate hearkens
back to older themes that focus on
selective exposure of complexity [4]

dependent on the developmental
considerations of children. This
exposes children to powerful ideas
because less time is spent just trying
to make things work. As Yasmin Kafai
and Mitchel Resnick have argued,
“Children don’t get the ideas; they
make ideas” [5]. And though learning
can be joyful to many children, a lot
of physical-computing educational
activities do not necessarily facilitate
the understanding required for
learning the subject matter.

ACKNOWLEDGMENTS
We owe a big thank you to Torben
Wallbaum, Meret Lindanis, and
Erika Root for helping with the
user study and crystalizing many
of the issues children were having.
We would also like to thank the late
Michael Eisenberg for the invaluable
discussions that led to these
reflections.

ENDNOTES
1.	 Resnick, M. and Ocko, S. LEGO/Logo:

Learning through and about design. In
Constructionism. I. Harel and S. Papert,
eds. Ablex Publishing, Norwood, NJ, 1991.

2.	 Harel, I. and Papert, S. Constructionism:
Research Reports and Esays, 1985-1990.
Ablex Publishing, Norwood, NJ, 1991.

3.	 Papert, S. Mindstorms: Children,
Computers, and Powerful Ideas. Basic
Books, New York, NY, 1980.

4.	 Blikstein, P. Gears of our childhood:
Constructionist toolkits, robotics, and
physical computing, past and future.
Proc. of the 12th International Conference
on Interaction Design and Children. ACM,
New York, 2013, 173–182.

5.	 Kafai, Y. and Resnick, M. Constructionism
in Practice: Designing, Thinking, and
Learning in a Digital World. Lawrence
Erlbaum Assoc., Mahwah, NJ, 1996.

	 Swamy Ananthanarayan is a postdoctoral
researcher in the Media Informatics and
Multimedia Systems Group at the University of
Oldenburg, Germany. His research focuses on
designing and evaluating tangible interactive
systems that have high social impact,
particularly for children, older adults, and
underserved populations.

	→ s.ananthanarayan@uni-oldenburg.de

	 Susanne Boll is a professor of media
informatics and multimedia systems in the
Department of Computing Science at the
University of Oldenburg, Germany. She heads
the Interactive Systems Group, which, among
other topics, focuses on ambient, mobile,
and tangible interfaces for children and older
adults.

	→ susanne.boll@uni-oldenburg.de

DOI: 10.1145/3386235  COPYRIGHT HELD BY AUTHORS. PUBLICATION RIGHTS LICENSED TO ACM. $15.00

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 0 2 0 I N T E R A C T I O N S 4 5

