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More recently, Papert’s principles 
have been repopularized by the Maker 
movement, which has focused on 
democratizing technology for various 
user groups. Particular to children, 
these technologies have been used to 
educate children in computational 
thinking. The assumption has 
been that by helping children make 
computationally intelligent artifacts, 
the children would in turn learn 
computational thought. So, how far 
have we come in realizing Papert’s 
vision of student-centered, discovery-
based learning?

We recently explored this question 
with a fairly new physical computing 

These days, children have many types 
of physical computing platforms, 
robotics devices, and computational 
toys available to them in both 
educational and domestic settings. 
The abundance of these devices for 
children are the fruits of research 
initiatives that began in the late 1960s. 
Seymour Papert’s constructionist 
principles about actively “creating and 
constructing meaningful” [1] artifacts 
as a way to build knowledge stands 
out among various learning theories. 
These ideas actively engage the learner 
in the learning process, but more 
important, help them create a “public 
entity” [2] that can be shared socially. 

T
Insights

	→ Physical computing kits 
should be dependent 
on the developmental 
considerations  
of children.

	→ Lack of visibility and 
trying to make things 
“just work” hinders 
the exploration of 
programming concepts.

	→ Learning programming 
should be a healthy side 
effect of learning to solve 
problems and expressing 
ideas through language.
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workshop, we maintained a communal 
area consisting of a poster and a table 
where children could display their 
work and discuss their ideas (Figure 
2). This is in line with an important 
aspect of Papert’s philosophy, which 
includes the public nature—the 
presentation and sharing—of artifacts 
that children create [3]. To scaffold 
the design process, we provided paper 
models for prototyping design ideas 
for the two project topics prior to 
implementation (Figure 2).

COSTUMES AND BACKPACKS
We found children to be enthusiastic 
and eager to receive their own 
personal Calliopes; they even 
personalized their Calliope cardboard 
boxes with symbols and drawings. 
Moreover, children were excited 
to immediately start exploring the 
programming environment. While 
some of this enthusiasm settled 
over time, as the novelty of the new 
platform wore off, kids were generally 
up for trying new things every session. 
For example, the discovery of how to 
generate tones on the piezo speaker 
rippled across the classroom until the 
majority of Calliopes were generating 
some melody or tune. For some 
children, the Calliope could simply 
not keep up with their imagination, 
with the platform’s actual capabilities 
falling short of their expectations. 
One girl dropped out of the class 
during the Halloween costume project 
because she wanted to make a Darth 
Vader voice modulator, a task that is 
hard to accomplish without significant 
work. For the other students, we 
observed a period where expectations 
were recalibrated as they slowly 
learned what the Calliope could and 
could not do.

While making the costumes, 
children primarily employed the light 
display and the RGB LED to in some 
way accentuate the crafted costume. 
For example, one 8-year-old girl made 
butterfly wings with a small cutout 
in the middle to display a heart on 
the Calliope LED display (Figures 
3a, 3d). A few children also used the 
buttons and the piezo speaker to make 
the costume a bit more interactive. In 
the grim reaper costume showcased 
in Figures 3b and 3c, the Calliope 
not only displays a sickle but also 
reacts to buttons on either side of the 
board. If button A is pressed, the LED 

platform called the Calliope mini 
(calliope.cc) with a small group of 
primary-school children. Much like 
its ancestor, the BBC micro:bit, it 
is designed to introduce children, 
elementary-school age and higher, 
to actively get involved in building 
new computational applications 
and artifacts. In this article, we 
aim to initiate a discussion about 
the design of physical computing 
platforms for children. Based on our 
preliminary work, this area could 
be suffering from a version of the 
QWERTY phenomenon—importing 
technologies from other professional 
fields without the necessary 
adaptations for their use by children.

EXPLORING CALLIOPE
Shaped like a six-pointed star (Figure 
1) with connection points at the 
edges, the Calliope integrates 25 
red LEDs, an RGB LED, two push 
buttons, a small piezo speaker, a 
motor driver, wireless Bluetooth 
communication, and a variety 
of sensors (e.g., microphone, 
accelerometer, compass, temperature, 
brightness). It can be programmed 
from any Web browser using a block-
based language and uses a micro USB 
cable for program transfer.

Our goal was to assess how well 
Calliope integrated with children’s 

approaches to crafting and making 
things, and also how well it supported 
their programming capabilities. 
Did it facilitate the discovery of 
programming-language concepts? In 
partnership with a local elementary 
school, we organized an after-school 
Calliope workshop with 10 children 
(boys and girls, five each) who were 
8 or 9 years old. The two-hour 
workshops occurred twice a month 
from late August to early January; we 
were able to hold a total of 10 sessions.

The workshops were designed to 
follow constructionist principles, with 
the intent of helping children discover 
Calliope for themselves through 
creative experimentation rather than 
through lectures or step-by-step 
guidance [2]. As adults, our roles were 
more mediational than instructional. 
Although we periodically provided 
brief overviews of Calliope’s 
capabilities through examples, 
children were left to explore Calliope 
on their own, with two to three adults 
as roaming facilitators. To provide a 
common shared goal for the children, 
we presented two broad gender-
neutral project topics. From August to 
October, the theme was to develop an 
interactive Halloween costume, and 
from November to January, children 
worked on creating an interactive 
backpack accessory. During each 

The workshops were designed to  
follow constructionist principles, with 
the intent of helping children discover 
Calliope for themselves through  
creative experimentation.

Figure 1. The Calliope mini physical computing platform with a Web-based programming 
environment that uses blocks to represent program instructions.
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display scrolls the text “I kill you,” 
and if button B is pressed, it plays an 
ominous melody. Although children 
experimented with the sensors, 
particularly the light sensor and the 
accelerometer, they were hesitant to 
use them for this project. Perhaps an 
interesting aspect was that children 
did not really distinguish between the 
different sensors and considered the 
Calliope itself to be the sensor.

Children, however, ventured 
beyond their comfort zone during the 
backpack accessory project. The use 
of sensors was more prevalent, and 
children who were initially using the 
Calliope as a display experimented 
with buttons and audio. For example, 
the 8-year-old girl who had made 

the butterfly wings (Figure 3d) 
utilized the Calliope this time to 
play a tone and display a little figure 
when button B was pressed (Figure 
4a). Three of the projects used the 
light sensor to turn the Calliope 
into a small flashlight to better 
illuminate the contents of the pack 
when it was opened (Figure 4b). A few 
children experimented with external 
LEDs to aesthetically accentuate 
their backpacks (Figure 4c); these 
lights were connected with wires 
to the output ports and often were 
controlled via the Calliope’s buttons. 
For three children, the accelerometer 
was used to idiosyncratically display 
various images on the LED screen or 
turn the RGB LED different colors. 

For example, one child displayed a 
little stick figure when the backpack 
was shaken.

SEPARATION OF CRAFTING 
AND PROGRAMMING
An interesting observation from our 
workshop was that although children 
were excited to program the Calliope 
and integrate it into their projects, 
there was a distinct separation 
between crafting and programming. 
During sessions, children focused on 
one or the other. Typically, children 
would craft their artifacts or costumes 
and then figure out how to integrate 
the Calliope afterward. This could 
be in part due to their still-maturing 
planning capabilities, but it could also 

Figure 2. Sharing and scaffolding the design process: a) communal poster for displaying ideas b) backpack paper-based template for prototyping 
c) popup figure for costume design.

Figure 3. Calliope Halloween costumes: a) butterfly wings with Calliope integrated in a yellow felt pouch b) grim reaper cape with Calliope 
integrated in a fabric pocket c) a sickle shown on the LED display d) a heart shown on the LED display in the middle of the butterfly wings.

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 0 2 0   I N T E R A C T I O N S   4 3



detect hand movement but have the 
LED display on the backpack. This 
would require two communicating 
Calliopes, which, while possible, is 
much harder to realize. Even if we 
disregard wearable designs, a child 
may want to monitor the temperature 
outside but have the LED display 
inside her room.

EASY TO PROGRAM BUT  
HARD TO UNDERSTAND
From a programming perspective, 
children described the Calliope as 
“very easy to program,” but we found 
they had considerable trouble 
explaining their code or 
understanding how the system 
worked. The concept of a forever loop 
was missed by most children, and they 
often did not understand why one was 
required for polled actions such as 
button presses. We received questions 
such as: How long is a loop? What if I 
do it 1,000 times? How many seconds 
is 500 ms? What does it mean to “get 
ambient light value”? However, 
despite these questions, we did find 
children exploring and trying the 
various colorful blocks in different 
configurations. Moreover, 
conditionals such as if-then 
statements, when associated with 
specific components (e.g., on button A 
pressed), were well understood.

While some of the programming 
issues can be solved by age-
appropriate wording in the blocks-
based environment (e.g., “turn pin 
1 on” or “give power to pin 1”), 

be that the Calliope does not integrate 
well into the types of crafting 
activities (e.g., drawing, coloring, 
gluing, cutting) to which they are 
accustomed. The Calliope in some 
ways stands distinctly apart from 
familiar materials. Consequently, they 
perceive it as something that needs to 
be affixed, attached, or accommodated 
for with a special pouch. It might 
be beneficial, therefore, to think 
about how these physical-computing 
platforms can be integrated into 
children’s practices.

TOO MUCH COUPLING
Perhaps an alternative way of 
envisioning physical computing would 
be to consider how we can support the 
kinds of things kids are interested in 
making and where we currently fall 
short. For example, one of the girls 
from our workshop wanted to create 
a superhero eye mask with a string of 
blue, blinking LEDs highlighting the 
eyes. What seems like a simple task 
actually requires considerable work. 
The LEDs need to be stitched and 
connected with conductive thread, 

and the positive and ground leads 
need to route to the Calliope’s ground 
and digital out connections. Since the 
Calliope cannot be accommodated 
on the eye mask due to its size, it has 
to reside elsewhere on the costume. 
To program this implementation, 
children have to go to the advanced 
menu in the blocks-based editor, find 
the “digital write” block, and set the 
pin and its associated value. To an 
8-year-old child who wants to create 
a Halloween costume, this entire 
process (the construction and the 
programming terminology) is both 
confusing and complicated. Moreover, 
this particular design does not employ 
any of the Calliope’s sensors.

Another issue lies with the coupling 
of sensors and feedback modalities 
on the same board. For one, children 
were unable to see the individual 
sensors on the board and conceptually 
grouped all the sensors together. 
But more important, designs that 
required sensors to be separate from 
the feedback modalities were simply 
not possible. For example, one child 
wanted to use the accelerometer to 

Children described the Calliope as  
“very easy to program,” but we found 
they had considerable trouble  
explaining their code or understanding 
how the system worked.

Figure 4. Backpack accessories: a) Calliope sewn inside a backpack, utilizing RGB LED and display b) Calliope used as a mini flashlight to 
illuminate a backpack’s interior based on light sensor values c) backpack fitted with external LEDs controlled by the Calliope’s buttons.
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there still exist several cognitive 
disconnects in the programming 
process. After putting together their 
code, children had to connect the 
Calliope via USB and download the 
program. This process confused 
children throughout the entire 
workshop. Finding the tiny USB port 
was difficult and children often forgot 
to connect the Calliope. They also 
had trouble transferring the compiled 
file to the Calliope USB drive on 
the computer. This was particularly 
vexing when multiple compiled files 
from prior programs were already 
present in the downloads folder. 
Children also did not understand 
why the Calliope did not work when 
the code was downloading. Although 
there is a built-in Calliope simulator 
in the programming environment, 
it could not simulate the sensors, 
so children had trouble figuring out 
what the sensors were doing without 
downloading the program.

LACK OF VISIBILITY
The key point here is that children 
lacked visibility into what the Calliope 
was doing, and therefore had trouble 
debugging their code. Often, when 
kids encountered a problem, they hit 
a button, shook the device, observed 
what others were doing, or simply 
asked one of the adults. Many times, 
they did not even know that their 
code had errors. As one exasperated 
student put it, “Why can’t you tear out 
the heart of the Calliope and examine 
it?” This statement was prompted 
by the fact that the transfer of code 
from the programming environment 
to the hardware was unidirectional. 
There is, for example, no way to look 
at the code on an already programmed 
Calliope by connecting it via USB. 
The child must remember to save the 
latest version of the program on a 
shared network resource. As one child 
remarked, “Maybe if you connect 
[the Calliope], the program should 
automatically show up. I don’t know 
whether the program on the Calliope 
is already the right program.”

A DISTRIBUTED APPROACH
One possible solution that addresses 
some of the problems discussed 
above would be to design a wireless 
kit of electronic blocks that were 

independent of each other and did 
not require a master microcontroller. 
Each sensor, LED, button, or motor 
would contain its own microcontroller, 
wireless adapter, and battery. These 
blocks could operate independently 
or communicate with each other 
wirelessly; therefore, a button on one 
side of the room could turn on a motor 
on the other side without a master 
microcontroller or wires in between.

Similarly, it should be quite 
possible to program the individual 
blocks wirelessly. This should greatly 
reduce the frustration kids often 
feel in waiting for the program to 
download. Moreover, the effects 
of the program cannot be seen in 
real time. This could be solved by 
switching to an interpreted language, 
where each independent module 
runs an interpreter that evaluates 
program statements in real time, 
wirelessly. Such a solution would not 
only facilitate debugging but also 
allow children to explore different 
parameters more quickly.

TOWARD PAPERT’S VISION
While children in our workshop had 
fun learning to use the Calliope, 
we still have some way to go in the 
realization of physical computing 
kits for children. Perhaps the real 
issue between Papert’s vision and 
some of today’s physical-computing 
platforms is philosophical. Platforms 
like the Calliope are really geared 
toward teaching through instruction 
rather than discovery. This is perhaps 
because of the current rhetoric around 
teaching children programming. 
There is an implicit urgency that 
betrays the economic necessity 
for more computer scientists. 
Contrast this with Papert’s vision in 
Mindstorms [3], where programming 
is seen as an aid to a child’s self-
knowledge and an understanding of 
his or her own mind. Competence in 
programming is almost a healthy side 
effect of learning to solve problems 
and expressing ideas through language 
(a programming language just happens 
to be one of many).

Admittedly, the ideas presented 
here are not particularly new. The 
design approach we advocate hearkens 
back to older themes that focus on 
selective exposure of complexity [4] 

dependent on the developmental 
considerations of children. This 
exposes children to powerful ideas 
because less time is spent just trying 
to make things work. As Yasmin Kafai 
and Mitchel Resnick have argued, 
“Children don’t get the ideas; they 
make ideas” [5]. And though learning 
can be joyful to many children, a lot 
of physical-computing educational 
activities do not necessarily facilitate 
the understanding required for 
learning the subject matter.
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